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 At the EAGE meeting in London I gave a talk on machine learning applied to 

inversion at the HPC booth, and was pleased to be invited by Martin to give 

that talk again in Houston. 

 But I have discovered that a big impediment to understanding machine 

learning is getting inside the “black box” and seeing what is really going on.

 So at the start of this talk I will use a simple geophysical problem to try and 

demystify machine learning algorithms and show that, like physics-based 

inversion, they have a mathematical structure that can be understood.

 I will then move to a real-world example and show how to extend our simple 

single-layer neural network to the deep, or multi-layer, case.

 The results will suggest that we need to use a judicious combination of both 

the machine learning and physics-based methods.
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Introduction



 A large number of geophysical problems can be linearized and expressed as:
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Theory-based versus machine learning analysis

Machine Learning 

Algorithm
Input = d Desired output = m

 However, in the machine learning approach we present the input and desired 

output to the algorithm and let it find the relationship:

                                                          , where: 

the input data,  a geophysical transform, and  = an underlying geological model.

G

G





d m

d =  m

 If we know the parameters in G, the solution can be found using least-squares:
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Deep Neural Networks (DNNs)

 The newer machine learning techniques 

use Deep Neural Networks (DNNs) with 

many hidden layers.    

 In the figure, the inputs are shown as the 

red circles, the hidden layers as the yellow 

circles and the outputs as the blue circles.

 The lines between the circles are weights 

which must be learned by the network.

 But what is a hidden layer, and how do we 

train the weights?

 I will use a simple model and a network with 

a single hidden layer to explain this.
4
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The geological model

 The model consists of a shale of 

P-wave impedance rshVsh = Ish= 

4500 m/s*g/cc, which both 

overlies and underlies a  wet 

sandstone of impedance rssVss = 

Iss= 5500 m/s*g/cc, where r is 

density and V is P-velocity.

 The reflection coefficient formula 

gives two reflection coefficients:
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Seismic inversion

 The two reflection coefficients 

can be exactly inverted back 

to impedance using the 

recursive inversion formula.

 This assumes that the first 

impedance is correctly 

estimated.

 The recursive formula is as 

follows:

1

1

1

i
i i i

i

r
r V

r
r




 2 2

1 0.1
4500 5500

1 0.1
Vr


  


3 3

1 0.1
5500 4500

1 0.1
Vr


  





7

Creating the seismic trace

 The convolution equation as follows, where 

the wavelet has be reduced to 3 points:

1

* ,  where 2  wavelet

1

s g r g

 
   
 
  

Seismic 
Amplitude

-0.1 +0.10.0

 We then convolve the 

reflection coefficients 

with a Ricker wavelet:
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The convolution equation

 The convolution equation can be also be written as a matrix equation:

Gs r

 In the above equation, s is a vector of seismic values, r is the vector of 

reflection coefficients given by:
0.1

,
0.1

 
   

r

 and G is the geophysical matrix with the wavelet in two columns spaced by 

the number of samples between reflection coefficients:
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The synthetic trace

 Performing the matrix multiplication, 

we get the following seismic trace:

0.5 0 0.05

1 0.5 0.1 0.15

0.5 1 0.1 0.15

0 0.5 0.05

G

    
                  
   

    

s r

 This is an example of seismic “tuning” 

since the wavelets interfere or “tune” to 

appear as a 90 degree phase wavelet 

and show an amplitude increase.

 Here is the result of the convolution, where 

a spline fit has been used to interpolate 

the values between the spikes:

 The original reflection coefficients are 
displayed, showing the effect of the 
wavelet.
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Inverting the tuned response

 Performing recursive inversion on the tuned seismic response creates two 

extra layers with lower impedance: 

4500

4071

ˆ 5508

4071

4500

I

 
 
 

  
 
 
  

 The “hat” over the impedance indicates that this is only an estimate of the correct 
answer (the dashed curve is the estimate and solid curve the true impedance).

 Our objective is to extract the true reflectivity from the synthetic seismic trace.
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Deconvolution

 The geophysical way to extract the reflectivity is to deconvolve the wavelet. 

 Since the G matrix is not square (i.e. there are more knowns than unknowns), 

this involves the least-squares approach, which is written: 

1 *

*

ˆ ˆ( ) ,  where  the reflectivity estimate, 

and = the generalized inverse.

T TG G G G

G

 r = s = s r

 If we know G exactly (which we rarely do!) the answer is perfect:  
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 The deconvolution approach to extracting reflection coefficients from seismic 

data produces good results as long as we are able to estimate the wavelet.

 Now, let’s look at the machine learning approach, which we will implement as 

a supervised neural network, where we know both the input and output:
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The machine learning approach

Machine Learning 

Algorithm

Input = seismic 

trace s
Desired output = 

reflectivity r

 That is, we will let the machine learning algorithm learn the weights that will 
transform the seismic trace into the reflectivity.

 This is actually a type of nonlinear regression, so first we will discuss the 
linear regression approach.



 In linear regression, we estimate the two unknown weights w0 (the intercept 

or bias) and w1 (the slope) in the equation:
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Linear regression

0 1w w r s

 Similar to deconvolution, linear regression can be written in matrix format as 

follows, where the reflectivity has been padded with zeros to make it the same 

length as the seismic trace:

0

1

1 0.05 0

1 0.15 0.1

1 0.15 0.1

1 0.05 0

w
S

w

   
     
           
   

   

r w

 The column of ones in the S matrix is there to multiply the bias term w0. 
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Linear regression

 Since the S matrix is not square, this again involves the least-squares approach, 

which is written: 

1 * *( ) ,  where = the generalized inverse.T TS S S S
w = s = S r

 Plugging in the values gives:  
0*

1

0

0.25 0.25 0.25 0.25 0.1 0

1 3 3 1 0.1 0.6

0

w
S

w

 
                     
 
 

w r

 This gives w0= 0 since the seismic and reflectivity both have zero mean.  

 The second weight, w1= 0.6, is simply a scaling coefficient which matches the 

amplitudes between the seismic and reflectivity. 
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Linear regression

 Applying the regression coefficients gives:

 This can be recursively inverted to give:  

1

0.05 0.03

0.15 0.09
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w

    
    
     
    

   
    

r s

4500

4238

ˆ 5076

4238

4500

I

 
 
 

  
 
 
  

 For the sand layer, the result is worse than before regression!
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Linear regression

 Another way to visualize the weights is to fit 

a straight line to the reflection coefficients 

versus seismic amplitudes, as shown here.

 The true values are shown by the black 

points and the line represents the equation:

 In deconvolution we got a perfect fit because 

our model assumptions were correct.  

ˆ 0 0.6 r s

 In least-squares regression, the points are fit in a “best” least-squares sense.
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Steepest Descent

 In both the deconvolution and regression methods, we inverted the full matrix.  

 For the large datasets used in seismic analysis this is impractical and we would 

normally use iterative techniques which do not involve calculating a matrix inverse.  

 The simplest iterative technique is called gradient descent, or steepest descent 

(SD), in which we iteratively arrive at a solution by starting with an initial guess.  

 The steepest descent algorithm for regression is written:

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

                                 ,  where 0, , ,

= weights at 1  iteration,  learning rate, and ( )

k k k k

st T T

k k k k

k K

k S S S









  

   

w w

w w r.





 Note that the gradient (k) is the difference between the right and left sides of 

the equation used as a starting point for full least-squares inversion. 
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Conjugate Gradient and Stochastic Gradient Descent

 A more efficient iterative technique is the conjugate gradient (CG) algorithm, which 

takes steps which are orthogonal to the change in gradient.  

 For linear problems, it can be shown that the CG algorithm always converges in 

the same number of steps as the number of unknown weights.

 A variant of the SD algorithm is called the least-mean-square, or LMS, algorithm 

which has applications in heart monitoring and noise cancelling headphones.  

 In the LMS algorithm the weights are trained one sample at a time and thus the 

method is time-adaptive.   

 In neural network applications, the LMS algorithm is called stochastic gradient 

descent (SGD).

 The figure on the next slide shows a comparison of all three algorithms applied to 

our regression problem.
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Comparison of gradient descent methods

 Here, SGD is shown by the jagged line, CG 

by a dashed line and SD by a solid line.

 At this scale both CG and SD appear to take 

two steps, but at a larger scale we would see 

that SD actually takes several more steps. 

 Each of the “jags” in the SGD algorithm 

represents an “epoch”, where we cycle 

through the four samples.

 10,000 epochs were used and the SGD 

algorithm still has not converged.

 The other two methods are in “batch” mode, 

with all the samples used simultaneously.
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The feedforward neural network

 We saw that the straight-line solution given by linear regression did not give a 

perfect fit between the true seismic and reflectivity values.  

 Neural networks, the oldest and best known type of machine learning algorithm, 

allow us to extend linear regression to nonlinear regression.  

 The neural network we use has two different names which seem contradictory: 

the feedforward neural network and the backpropagation neural network.  

 The term feedforward refers to how the output is computed from the input if the 

weights have already been determined.  

 The term backpropagation refers to how the training of the weights is performed, 

using a technique called error backpropagation. 

 Let’s now describe the algorithm and apply it to our problem.
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The complete neural network

 Here is a diagram of the complete neural network we will use, consisting of an 

input layer, “hidden” layer, output layer and backpropagation algorithm:

Input 

layer

“Hidden” layer
Output 

layer

 The key innovation in the network are the three neurons in the last two layers.

Backpropagation
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The logistic function

 The difference between linear and 

nonlinear regression is the neurons.

 Each neuron applies a linear or nonlinear 

function to the weighted inputs.

 The most common nonlinear function is the 

logistic (sigmoidal) function, shown here.

 The mathematical form of the logistic 

function is:

1
( )

1 exp( )
f y

y


 

 '( ) ( ) 1 ( )f y f y f y 

 A computational advantage of the logistic 

function is its derivative, given by:
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Applying the logistic function in the “hidden” layer

 The inputs are now weighted by 

four weights and fed into the first 

two neurons.

 Application of the logistic function 

to these weighted inputs gives two 

intermediate estimates of the 

reflectivity:

 

 

(1)

1 (1)

1

(1)

2 (1)

2

1
ˆ ,

1 exp
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 


 

r
y

r
y

 
(1)

(1)

1
ˆ

1 exp
ij

ij

r
y


 

 This is called a “hidden” layer because 

the algorithm estimates the weights.

 Finally, these intermediate values are 

weighted and a final logistic function is 

applied:
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The backpropagation algorithm

 To find the optimum weights for our neural network a procedure called error 

backpropagation is used.  

 The algorithm can be summarized as follows:

– Initialize the weights in both layers to small random values.

– Starting with the weights in the output layer, change the weights so as to 

minimize the error between the computed and desired output values.

– Backpropagate the error minimization for all layers.

– Iterate until an acceptable error is found.

 Let’s now look at error backpropagation in more detail.
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The backpropagation algorithm

 The first step is to compute the error between the output of the network:

(2) (2)ˆ= r - r

 Then, this error is iteratively reduced using gradient descent (see appendix).
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Applying the neural network

 Backpropagation starts with a random guess of the initial weights at step k = 0.

 Taking values from a normal distribution between 1 and 1, our initial weights are:

 First, we scaled up the input and output values by a factor of 10 since neural networks 
work best with data normalized between -1 and 1.

 Applying the backpropagation technique with 10,000 iterations and  = 0.2 produced 
the final weights given by:
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w
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   
                           
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w

   
                           
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Neural network results

 The computation of the final reflectivity is therefore given as:

(2)

(10000)

0.0030

0.0999
ˆ

0.0999

0.0030

 
 
 
 

 
 

r

   
(2) 2.5584 2.3382
ˆ 0.1* 2.3384

1 exp 6.1001 3.7842 1 exp 6.0617 3.8453
i

i i

r
s s

 
   

     

 The values of the final reflectivity are as follows:

 This is an almost perfect result  and can be made as close to the correct 

answer as we want by increasing the number of iterations.



28

Neural network results

 As with the regression result, we can 

crossplot the output reflectivity against the 

input seismic.

 The result is shown on the right.

 Note the almost perfect fit at the input and 

output points, but the strong “imprint” of 

the logistic function.

 The obvious question is whether this mathematical transform has any 

relationship to the physics of the problem.

 Now let’s look at the weights themselves.
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The weights after each iteration

 The weights as a function of iteration 
# for the four first-layer weights. 

 Note the change after iteration 2000. 

 The weights as a function of iteration 
# for the three second-layer weights. 

 Note the change after iteration 2000. 
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The least-squared error

 Here is the least-squared error after each 

iteration, computed by the formula:
4

(2) 2

( ) ( )

1

1
ˆ( )

2
k i i k

i

E r r


=

 The error can be divided into four regions:

– From iteration 1 to iteration 10 there is a 
dramatic drop in the error.  

– Between iterations 10 and 2000, the change in 
the error is almost flat, indicating we are trapped 
in a “local minimum”.  

– Between iterations 2000 and 3000 there is 
another sharp decrease in the error.  

– After iteration 3000 there is a gradual decline in 
the error towards zero.
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The local minimum

 Below, the least-squared error of the linear 

regression has been plotted at iteration 2000:

 The perfect fit suggests that the local minimum 

is close to the least-squares regression.

 This is confirmed by comparing the two plots 

at the right. 
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Summary of our simple model results

(a) shows the true reflectivity and the result of a “perfect” deconvolution,

(b) shows the convolution of a symmetrical wavelet with the reflectivity, 

(c) shows the least-squared scaling of (b) to match (a), and

(d) shows the neural network prediction of (a) from (b).

(a) (b) (c) (d)



Seismic Inversion on real data 
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 Our first example was a simple numerical example that we could do by hand.

 Normally, inversion is done on multiple CPUs or GPUs, where the input is on the 

left, a low frequency model in the center and the impedance inversion on the right:

Seismic Initial Model Inversion



Supervised Learning (Emerge)

 Hampson et al. (2001) described a supervised 

learning methodology to predict log properties like 

impedance using the following flow: 

– The input of multiple attributes generated from 

the seismic data.

– The development of a statistical relationship by 

analyzing a set of training data at well locations.

– The use of either a linear (multivariate 

regression) or nonlinear (single hidden layer 

neural network). 

– The use of cross-validation to estimate the 

reliability of the derived relationship.
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Deep Neural Networks (DNNs)

 We have updated that inversion flow using a 

Deep Neural Network (DNN) with many 

hidden layers. 

 If a neural network has many hidden layers it 

can model complex nonlinear relationships.    

 The weights are solved as large nonlinear 

inverse problem using iterative techniques.

– The solution for the weights is non-unique. 

 Similar to linear methods: 

– The weights are calculated on training data.

– To ensure the network is not over trained the 

network is tested on a validation data set.
35



Do we have enough training data?
L-curve

Bias Variance

E
rr

o
r

# of Parameters

Training Error

 Deep neural networks have many 

layers and parameters, which 

increases the risk of overfitting, where:
– Overfitting is characterized by observing: 

– Small training error 

– Large validation error 

 Possible solutions
– Reduce the number of parameters / layers

– Regularization, early stopping

– Increase the amount data:  

– Needs to be labelled data!

– Synthetic data

– Theory-guided data science
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Theory-guided data science models (TGDS)

Low

High

High

Low

Theory-guided

Data Science Models

(TGDS)1

1Karpatne et al., 2017, “Theory-guided data science: 

A New paradigm for scientific discovery”
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 A recent paper by Karpatne et al 

(2017) suggests a new approach to 

scientific discovery, which combines 

both theory and machine learning. 

 Traditional theory-based models make 

high use of scientific knowledge.

 However, the newer data science-

based models make high use of data.

 Theory-guided data science (TDGS) 

modelling combines the best of both.

 But this approach requires a large 

number of representative samples.
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Data Science Models



Machine Learning Post-stack Inversion

 Following Karpatne et al. (2017) our Machine 

Learning Inversion uses a TGDS model, where:  

– We build a 2D impedance model from well 

control, using 12 wells in all.

– We generate post-stack synthetics for each 

location using a wavelet derived from the seismic.

– The outputs of the theory-based component are 

then used as inputs in the data science 

component. 

 That is, the synthetic data is used to train and 

validate a DNN.

 The trained DNN is then applied to the real data.

38

Theory-based model



Conventional inversion (top) Vs. DNN (bottom)

39
39
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 The results look amazingly similar.  

 Note that the character of the results is 

very similar, with slight differences in 

amplitudes.  

 Where there is a noticeable difference, 

(arrow), the DNN matches the log curve 

better.

DNN

Inversion

DNN

Inversion

Well log

Comparison at the 09-08 well
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DNN trained on all wells

DNN trained on 7 wellsBlind wells

Blind locations



 We then extended our algorithm to pre-

stack data where we use a hybrid 

theory and data model to predict 

reservoir properties:

– Rock physics relationships were used 

to simulate a large, idealized set of 

well logs and synthetics.  

– Pre-stack synthetic data was used to 

train the DNN to estimate elastic and 

rock properties.

 Unlike our previous example, only 

one well is used in this analysis.  

Angle Gathers
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 The seismic data above was 

processed in a manner suitable for 

simultaneous inversion. 

 Our flow is shown in the next slides.

Gulf Coast example



Synthetic Catalog Workflow

Step 1: Petrophysical

Analysis

GR Re

s.

Vp Rho

D
e
p

th
D

e
p

th

Vclay Phi Sw

Step 2: Rock Physics Model 

Calibration

Establish the rock physics model    

Vp, Vs, r = RPM(f, Vcl, Sw, MSI)

Rock Physics 

Template of the 

unconsolidated (soft) 

sand model extended 

to the intermediate and 

stiff sand models

through the Matrix 

Stiffness Index (MSI) 

parameter (Allo, 2019).

43



Synthetic Catalog Workflow

Step 3: Statistical analysis

Vclay Phi Sw MSI

D
e
p

th

a) Define lithofacies and calculate 

the background trend

b) Establish the statistics for each 

lithofacies: the covariance matrix 

V
c

la
y

P
h

i
S

w
M

S
I

Vclay Phi Sw MSI

c) Model the vertical 

continuity: the spatial 

variogram

Exponential variogram

Data variogram

The variogram influences the 

vertical resolution of the 

simulations generated in next 

step.
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Synthetic Catalog Workflow

Step 4: Elastic Properties 

Simulations

Vp RhoVp/VsVclay Phi Sw MSI

D
e
p

th

Vp RhoVp/VsVclay Phi Sw MSI

D
e
p

th

Step 5: Synthetics 

generation

T
im

e
T

im
e

Angle

Angle

Step 6: DFNN training and 

application

Sw
0

1

T
im

e

Saturation prediction
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 Any log curve can be specified as 

the target.  In the example the P-

wave impedance is the Target log.

 The input attributes are calculated 

from the near, mid and far angle 

stacks calculated from the 

synthetic gathers.

 In addition, the low-frequency P-

wave impedance strata model is 

input.

Training and validating the DNN operator
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Applying the DNN operator to the real data

Low-frequency Strata model Ip from inversion Ip from DNN



Applying the DNN operator to the real data

The density 

predicted by DNN 

gives a higher 

resolution result 

than pre-stack 

inversion and 

appears to tie the 

well better.
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Low-frequency Strata model Density from inversion Density from DNN



Gas Saturation 
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Application of DNN lithology prediction to real volume  

50

Porous 

gas sand

Shale

wet sand



Summary

 In the first part of the talk, I gave a detailed comparison between conventional and 

machine learning inversion using a simple example.

 I then moved to a hybrid theory-guided data science (TGDS) model approach for 

inverting large datasets, in which:

– Rock physics and seismic theory is used to generate synthetic data which is then used to 

train the neural network. 

– The theory is then used to generate data not present in the well data.

 Both post-stack and pre-stack inversion examples were shown

– The post-stack results were nearly identical.

– The machine learning pre-stack inversion had higher frequencies than the theory based 

method.  

– The DNN allows for nonlinear models so we can estimate target variables such as fluid 

saturation or lithology.
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Questions?
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Appendix: The complete neural network solution

 Here is a diagram of the complete neural network we will use, consisting of an 

input layer, “hidden” layer, output layer and backpropagation algorithm:

Input 

layer

“Hidden” layer
Output 

layer

 The key innovation in the network are the three neurons in the last two layers.

Backpropagation
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The feedforward neural network

 In the first part of the process we 

apply two sets of bias and gradient 

weights to the  seismic samples.  

 This can be written in vector or 

matrix format as follows, where 

superscript (1) is the first layer:

(1) (1)

(1) (1) (1) (1) 01 02

1 2 (1) (1)

11 12

1 0.05

1 0.15

1 0.15

1 0.05

w w
Y SW

w w

 
   
            
 

 

y y 

 

(1) (1) (1)

1 01 11

(1) (1) (1)

2 02 12

         ,

         ,

where 1 1 1 1 ,and 

.05 .15 .15 .05

T

T

w w

w w

 

 



  

1

1

1

y s

y s

s
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The logistic function

 The difference between linear and 

nonlinear regression is the neurons.

 Each neuron applies a linear or nonlinear 

function to the weighted inputs.

 The most common nonlinear function is the 

logistic (sigmoidal) function, shown here.

 The mathematical form of the logistic 

function is:

1
( )

1 exp( )
f y

y


 

 '( ) ( ) 1 ( )f y f y f y 

 A computational advantage of the logistic 

function is its derivative, given by:
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Applying the logistic function in the “hidden” layer

 Thus, we will next apply the logistic 

functions in the “hidden” layer.

 This gives two intermediate 

estimates of the reflectivity, which 

again can be written in vector or 

matrix format:

 

 

(1)

1 (1)

1

(1)

2 (1)

2

1
ˆ ,

1 exp

1
ˆ .

1 exp


 


 

r
y

r
y

 
 

(1) (1)

11 12

(1) (1)

(1) (1) (1) (1)21 22

(1) (1) (1)
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(1) (1)

41 42

ˆ ˆ1

ˆ ˆ1 1
ˆ, .

ˆ ˆ1 1 exp

ˆ ˆ1

ij

ij

r r

r r
R F Y r

r r y

r r

 
 
    
   
 
 
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The output layer

 Finally, we get to the output layer, 

shown by the superscript (2).

 This involves first computing a 

weighted sum of the intermediate 

wavelets with a new bias and two 

gradient weights:

(2) (2) (2) (1) (2) (1)

0 1 1 2 2

(1) (1) (1) (1) (1)

1 11 21 31 41

(1) (1) (1) (1) (1)

2 12 22 32 42

ˆ ˆ ˆ ,  where:

ˆ ˆ ˆ ˆ ˆ ,  and

ˆ ˆ ˆ ˆ ˆ .

T

T

w w w

r r r r

r r r r

  

   

   

1y r r

r

r

 (2) (2) (2) (2) (1) (2) (1) (2)

0 1 1 2 2
ˆ ˆ ˆ ˆf w w w   1r r r y

 Our second function is linear, giving:

 Or, in matrix form:

(2) (1) (2) (2) (2) (2) (2)

0 1 2
ˆ , where .TR w w w    r w w
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The logistic function

 The difference between linear and 

nonlinear regression is the neurons.

 Each neuron applies a linear or nonlinear 

function to the weighted inputs.

 The most common nonlinear function is the 

logistic (sigmoidal) function, shown here.

 The mathematical form of the logistic 

function is:

1
( )

1 exp( )
f y

y


 

 '( ) ( ) 1 ( )f y f y f y 

 A computational advantage of the logistic 

function is its derivative, given by:
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The backpropagation algorithm

 To find the optimum weights for our neural network a procedure called error 

backpropagation is used.  

 The algorithm can be summarized as follows:

– Initialize the weights in both layers to small random values.

– Starting with the weights in the output layer, change the weights so as to 

minimize the error between the computed and desired output values.

– Backpropagate the error minimization for all layers.

– Iterate until an acceptable error is found.

 Let’s now look at error backpropagation in more detail.
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The backpropagation algorithm

 The first step is to compute the error between the output of the network (starting 

with the initial weights), which is given by:

(2) (2)ˆ= r - r
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The backpropagation algorithm

 The details of the backpropagation algorithm are as follows.

 We start by iteratively updating the weights in layer 2, where for the k+1st

iteration, we get:
(2) (2) (1) (2)

( 1) ( ) ( ) ( )

T

k k k kR  w w 

 With the exception of the reflectivity matrix note the similarity of this equation to 

the steepest descent equation.

 The second step is to update the weights in layer 1 as follows:

(1) (1) (1)

( 1) ( ) ( )

(1) (1) (1) (2) (2)

( ) ( ) ( ) ( 1) ( 1)

     , where:

(1 )

T T

k k k

T
T

k k k k k

W W S

R R



 

 

       w



 

 The key new idea in backpropagation is the use of the derivative of the logistic 

function, where o implies an element-by-element multiplication of two matrices.

Derivative of 

logistic 

function


