
Inversion and machine learning

Brian Russell

 At the EAGE meeting in London I gave a talk on machine learning applied to

inversion at the HPC booth, and was pleased to be invited by Martin to give

that talk again in Houston.

 But I have discovered that a big impediment to understanding machine

learning is getting inside the “black box” and seeing what is really going on.

 So at the start of this talk I will use a simple geophysical problem to try and

demystify machine learning algorithms and show that, like physics-based

inversion, they have a mathematical structure that can be understood.

 I will then move to a real-world example and show how to extend our simple

single-layer neural network to the deep, or multi-layer, case.

 The results will suggest that we need to use a judicious combination of both

the machine learning and physics-based methods.

2

Introduction

 A large number of geophysical problems can be linearized and expressed as:

3

Theory-based versus machine learning analysis

Machine Learning

Algorithm
Input = d Desired output = m

 However, in the machine learning approach we present the input and desired

output to the algorithm and let it find the relationship:

 , where:

the input data, a geophysical transform, and = an underlying geological model.

G

G





d m

d = m

 If we know the parameters in G, the solution can be found using least-squares:

 
1

T TG G G


m d

Deep Neural Networks (DNNs)

 The newer machine learning techniques

use Deep Neural Networks (DNNs) with

many hidden layers.

 In the figure, the inputs are shown as the

red circles, the hidden layers as the yellow

circles and the outputs as the blue circles.

 The lines between the circles are weights

which must be learned by the network.

 But what is a hidden layer, and how do we

train the weights?

 I will use a simple model and a network with

a single hidden layer to explain this.
4

5

The geological model

 The model consists of a shale of

P-wave impedance rshVsh = Ish=

4500 m/s*g/cc, which both

overlies and underlies a wet

sandstone of impedance rssVss =

Iss= 5500 m/s*g/cc, where r is

density and V is P-velocity.

 The reflection coefficient formula

gives two reflection coefficients:

1 1

1 1

i i i i
i

i i i i

V V
r

V V

r r

r r
 

 





1

5500 4500
0.1

5500 4500
r


   


2

4500 5500
0.1

4500 5500
r


   



6

Seismic inversion

 The two reflection coefficients

can be exactly inverted back

to impedance using the

recursive inversion formula.

 This assumes that the first

impedance is correctly

estimated.

 The recursive formula is as

follows:

1

1

1

i
i i i

i

r
r V

r
r




 2 2

1 0.1
4500 5500

1 0.1
Vr


  


3 3

1 0.1
5500 4500

1 0.1
Vr


  



7

Creating the seismic trace

 The convolution equation as follows, where

the wavelet has be reduced to 3 points:

1

* , where 2 wavelet

1

s g r g

 
   
 
  

Seismic
Amplitude

-0.1 +0.10.0

 We then convolve the

reflection coefficients

with a Ricker wavelet:

8

The convolution equation

 The convolution equation can be also be written as a matrix equation:

Gs r

 In the above equation, s is a vector of seismic values, r is the vector of

reflection coefficients given by:
0.1

,
0.1

 
   

r

 and G is the geophysical matrix with the wavelet in two columns spaced by

the number of samples between reflection coefficients:

0.5 0

1 0.5

0.5 1

0 0.5

G

 
 
 
 

 
 

9

The synthetic trace

 Performing the matrix multiplication,

we get the following seismic trace:

0.5 0 0.05

1 0.5 0.1 0.15

0.5 1 0.1 0.15

0 0.5 0.05

G

    
                  
   

    

s r

 This is an example of seismic “tuning”

since the wavelets interfere or “tune” to

appear as a 90 degree phase wavelet

and show an amplitude increase.

 Here is the result of the convolution, where

a spline fit has been used to interpolate

the values between the spikes:

 The original reflection coefficients are
displayed, showing the effect of the
wavelet.

10

Inverting the tuned response

 Performing recursive inversion on the tuned seismic response creates two

extra layers with lower impedance:

4500

4071

ˆ 5508

4071

4500

I

 
 
 

  
 
 
  

 The “hat” over the impedance indicates that this is only an estimate of the correct
answer (the dashed curve is the estimate and solid curve the true impedance).

 Our objective is to extract the true reflectivity from the synthetic seismic trace.

11

Deconvolution

 The geophysical way to extract the reflectivity is to deconvolve the wavelet.

 Since the G matrix is not square (i.e. there are more knowns than unknowns),

this involves the least-squares approach, which is written:

1 *

*

ˆ ˆ() , where the reflectivity estimate,

and = the generalized inverse.

T TG G G G

G

 r = s = s r

 If we know G exactly (which we rarely do!) the answer is perfect:

*

0.05

0.6 0.8 0.2 0.4 0.15 0.1
ˆ

0.4 0.2 0.8 0.6 0.15 0.1

0.05

G

 
                   
 
 

r = r = s

 The deconvolution approach to extracting reflection coefficients from seismic

data produces good results as long as we are able to estimate the wavelet.

 Now, let’s look at the machine learning approach, which we will implement as

a supervised neural network, where we know both the input and output:

12

The machine learning approach

Machine Learning

Algorithm

Input = seismic

trace s
Desired output =

reflectivity r

 That is, we will let the machine learning algorithm learn the weights that will
transform the seismic trace into the reflectivity.

 This is actually a type of nonlinear regression, so first we will discuss the
linear regression approach.

 In linear regression, we estimate the two unknown weights w0 (the intercept

or bias) and w1 (the slope) in the equation:

13

Linear regression

0 1w w r s

 Similar to deconvolution, linear regression can be written in matrix format as

follows, where the reflectivity has been padded with zeros to make it the same

length as the seismic trace:

0

1

1 0.05 0

1 0.15 0.1

1 0.15 0.1

1 0.05 0

w
S

w

   
     
           
   

   

r w

 The column of ones in the S matrix is there to multiply the bias term w0.

14

Linear regression

 Since the S matrix is not square, this again involves the least-squares approach,

which is written:

1 * *() , where = the generalized inverse.T TS S S S
w = s = S r

 Plugging in the values gives:
0*

1

0

0.25 0.25 0.25 0.25 0.1 0

1 3 3 1 0.1 0.6

0

w
S

w

 
                     
 
 

w r

 This gives w0= 0 since the seismic and reflectivity both have zero mean.

 The second weight, w1= 0.6, is simply a scaling coefficient which matches the

amplitudes between the seismic and reflectivity.

15

Linear regression

 Applying the regression coefficients gives:

 This can be recursively inverted to give:

1

0.05 0.03

0.15 0.09
ˆ 0.6

0.15 0.09

0.05 0.03

w

    
    
     
    

   
    

r s

4500

4238

ˆ 5076

4238

4500

I

 
 
 

  
 
 
  

 For the sand layer, the result is worse than before regression!

16

Linear regression

 Another way to visualize the weights is to fit

a straight line to the reflection coefficients

versus seismic amplitudes, as shown here.

 The true values are shown by the black

points and the line represents the equation:

 In deconvolution we got a perfect fit because

our model assumptions were correct.

ˆ 0 0.6 r s

 In least-squares regression, the points are fit in a “best” least-squares sense.

17

Steepest Descent

 In both the deconvolution and regression methods, we inverted the full matrix.

 For the large datasets used in seismic analysis this is impractical and we would

normally use iterative techniques which do not involve calculating a matrix inverse.

 The simplest iterative technique is called gradient descent, or steepest descent

(SD), in which we iteratively arrive at a solution by starting with an initial guess.

 The steepest descent algorithm for regression is written:

(1) () () ()

(1) () () ()

 , where 0, , ,

= weights at 1 iteration, learning rate, and ()

k k k k

st T T

k k k k

k K

k S S S









  

   

w w

w w r.





 Note that the gradient (k) is the difference between the right and left sides of

the equation used as a starting point for full least-squares inversion.

18

Conjugate Gradient and Stochastic Gradient Descent

 A more efficient iterative technique is the conjugate gradient (CG) algorithm, which

takes steps which are orthogonal to the change in gradient.

 For linear problems, it can be shown that the CG algorithm always converges in

the same number of steps as the number of unknown weights.

 A variant of the SD algorithm is called the least-mean-square, or LMS, algorithm

which has applications in heart monitoring and noise cancelling headphones.

 In the LMS algorithm the weights are trained one sample at a time and thus the

method is time-adaptive.

 In neural network applications, the LMS algorithm is called stochastic gradient

descent (SGD).

 The figure on the next slide shows a comparison of all three algorithms applied to

our regression problem.

19

Comparison of gradient descent methods

 Here, SGD is shown by the jagged line, CG

by a dashed line and SD by a solid line.

 At this scale both CG and SD appear to take

two steps, but at a larger scale we would see

that SD actually takes several more steps.

 Each of the “jags” in the SGD algorithm

represents an “epoch”, where we cycle

through the four samples.

 10,000 epochs were used and the SGD

algorithm still has not converged.

 The other two methods are in “batch” mode,

with all the samples used simultaneously.

20

The feedforward neural network

 We saw that the straight-line solution given by linear regression did not give a

perfect fit between the true seismic and reflectivity values.

 Neural networks, the oldest and best known type of machine learning algorithm,

allow us to extend linear regression to nonlinear regression.

 The neural network we use has two different names which seem contradictory:

the feedforward neural network and the backpropagation neural network.

 The term feedforward refers to how the output is computed from the input if the

weights have already been determined.

 The term backpropagation refers to how the training of the weights is performed,

using a technique called error backpropagation.

 Let’s now describe the algorithm and apply it to our problem.

21

The complete neural network

 Here is a diagram of the complete neural network we will use, consisting of an

input layer, “hidden” layer, output layer and backpropagation algorithm:

Input

layer

“Hidden” layer
Output

layer

 The key innovation in the network are the three neurons in the last two layers.

Backpropagation

22

The logistic function

 The difference between linear and

nonlinear regression is the neurons.

 Each neuron applies a linear or nonlinear

function to the weighted inputs.

 The most common nonlinear function is the

logistic (sigmoidal) function, shown here.

 The mathematical form of the logistic

function is:

1
()

1 exp()
f y

y


 

 '() () 1 ()f y f y f y 

 A computational advantage of the logistic

function is its derivative, given by:

23

Applying the logistic function in the “hidden” layer

 The inputs are now weighted by

four weights and fed into the first

two neurons.

 Application of the logistic function

to these weighted inputs gives two

intermediate estimates of the

reflectivity:

 

 

(1)

1 (1)

1

(1)

2 (1)

2

1
ˆ ,

1 exp

1
ˆ .

1 exp


 


 

r
y

r
y

 
(1)

(1)

1
ˆ

1 exp
ij

ij

r
y


 

 This is called a “hidden” layer because

the algorithm estimates the weights.

 Finally, these intermediate values are

weighted and a final logistic function is

applied:

24

The backpropagation algorithm

 To find the optimum weights for our neural network a procedure called error

backpropagation is used.

 The algorithm can be summarized as follows:

– Initialize the weights in both layers to small random values.

– Starting with the weights in the output layer, change the weights so as to

minimize the error between the computed and desired output values.

– Backpropagate the error minimization for all layers.

– Iterate until an acceptable error is found.

 Let’s now look at error backpropagation in more detail.

25

The backpropagation algorithm

 The first step is to compute the error between the output of the network:

(2) (2)ˆ= r - r

 Then, this error is iteratively reduced using gradient descent (see appendix).

26

Applying the neural network

 Backpropagation starts with a random guess of the initial weights at step k = 0.

 Taking values from a normal distribution between 1 and 1, our initial weights are:

 First, we scaled up the input and output values by a factor of 10 since neural networks
work best with data normalized between -1 and 1.

 Applying the backpropagation technique with 10,000 iterations and  = 0.2 produced
the final weights given by:

(2)

0(0)(1) (1)

01(0) 02(0)(1) (2) (2)

(0) (0) 1(0)(1) (1)

11(0) 12(0) (2)

2(0)

0.3736
0.0940 0.4894

, and 0.633
0.4074 0.6221

0.263

w
w w

W w
w w

w

   
                           

w

(2)

0(10000)(1) (1)

01(10000) 02(10000)(1) (2) (2)

(10000) (10000) 1(10000)(1) (1)

11(10000) 12(10000) (2)

2(10000)

2.3384
6.1001 6.0617

, and 2.5254
3.7842 3.8453

2.3382

w
w w

W w
w w

w

   
                           

w

27

Neural network results

 The computation of the final reflectivity is therefore given as:

(2)

(10000)

0.0030

0.0999
ˆ

0.0999

0.0030

 
 
 
 

 
 

r

   
(2) 2.5584 2.3382
ˆ 0.1* 2.3384

1 exp 6.1001 3.7842 1 exp 6.0617 3.8453
i

i i

r
s s

 
   

     

 The values of the final reflectivity are as follows:

 This is an almost perfect result and can be made as close to the correct

answer as we want by increasing the number of iterations.

28

Neural network results

 As with the regression result, we can

crossplot the output reflectivity against the

input seismic.

 The result is shown on the right.

 Note the almost perfect fit at the input and

output points, but the strong “imprint” of

the logistic function.

 The obvious question is whether this mathematical transform has any

relationship to the physics of the problem.

 Now let’s look at the weights themselves.

29

The weights after each iteration

 The weights as a function of iteration
for the four first-layer weights.

 Note the change after iteration 2000.

 The weights as a function of iteration
for the three second-layer weights.

 Note the change after iteration 2000.

30

The least-squared error

 Here is the least-squared error after each

iteration, computed by the formula:
4

(2) 2

() ()

1

1
ˆ()

2
k i i k

i

E r r


=

 The error can be divided into four regions:

– From iteration 1 to iteration 10 there is a
dramatic drop in the error.

– Between iterations 10 and 2000, the change in
the error is almost flat, indicating we are trapped
in a “local minimum”.

– Between iterations 2000 and 3000 there is
another sharp decrease in the error.

– After iteration 3000 there is a gradual decline in
the error towards zero.

31

The local minimum

 Below, the least-squared error of the linear

regression has been plotted at iteration 2000:

 The perfect fit suggests that the local minimum

is close to the least-squares regression.

 This is confirmed by comparing the two plots

at the right.

32

Summary of our simple model results

(a) shows the true reflectivity and the result of a “perfect” deconvolution,

(b) shows the convolution of a symmetrical wavelet with the reflectivity,

(c) shows the least-squared scaling of (b) to match (a), and

(d) shows the neural network prediction of (a) from (b).

(a) (b) (c) (d)

Seismic Inversion on real data

33

 Our first example was a simple numerical example that we could do by hand.

 Normally, inversion is done on multiple CPUs or GPUs, where the input is on the

left, a low frequency model in the center and the impedance inversion on the right:

Seismic Initial Model Inversion

Supervised Learning (Emerge)

 Hampson et al. (2001) described a supervised

learning methodology to predict log properties like

impedance using the following flow:

– The input of multiple attributes generated from

the seismic data.

– The development of a statistical relationship by

analyzing a set of training data at well locations.

– The use of either a linear (multivariate

regression) or nonlinear (single hidden layer

neural network).

– The use of cross-validation to estimate the

reliability of the derived relationship.

34

Deep Neural Networks (DNNs)

 We have updated that inversion flow using a

Deep Neural Network (DNN) with many

hidden layers.

 If a neural network has many hidden layers it

can model complex nonlinear relationships.

 The weights are solved as large nonlinear

inverse problem using iterative techniques.

– The solution for the weights is non-unique.

 Similar to linear methods:

– The weights are calculated on training data.

– To ensure the network is not over trained the

network is tested on a validation data set.
35

Do we have enough training data?
L-curve

Bias Variance

E
rr

o
r

of Parameters

Training Error

 Deep neural networks have many

layers and parameters, which

increases the risk of overfitting, where:
– Overfitting is characterized by observing:

– Small training error

– Large validation error

 Possible solutions
– Reduce the number of parameters / layers

– Regularization, early stopping

– Increase the amount data:

– Needs to be labelled data!

– Synthetic data

– Theory-guided data science

36

Theory-guided data science models (TGDS)

Low

High

High

Low

Theory-guided

Data Science Models

(TGDS)1

1Karpatne et al., 2017, “Theory-guided data science:

A New paradigm for scientific discovery”

Use of Data

U
s
e

 o
f
S

c
ie

n
ti
fi
c
 K

n
o

w
le

d
g

e

 A recent paper by Karpatne et al

(2017) suggests a new approach to

scientific discovery, which combines

both theory and machine learning.

 Traditional theory-based models make

high use of scientific knowledge.

 However, the newer data science-

based models make high use of data.

 Theory-guided data science (TDGS)

modelling combines the best of both.

 But this approach requires a large

number of representative samples.

T
h
e
o
ry

-b
a
s
e
d
 M

o
d
e
ls

Data Science Models

Machine Learning Post-stack Inversion

 Following Karpatne et al. (2017) our Machine

Learning Inversion uses a TGDS model, where:

– We build a 2D impedance model from well

control, using 12 wells in all.

– We generate post-stack synthetics for each

location using a wavelet derived from the seismic.

– The outputs of the theory-based component are

then used as inputs in the data science

component.

 That is, the synthetic data is used to train and

validate a DNN.

 The trained DNN is then applied to the real data.

38

Theory-based model

Conventional inversion (top) Vs. DNN (bottom)

39
39

40

 The results look amazingly similar.

 Note that the character of the results is

very similar, with slight differences in

amplitudes.

 Where there is a noticeable difference,

(arrow), the DNN matches the log curve

better.

DNN

Inversion

DNN

Inversion

Well log

Comparison at the 09-08 well

41

DNN trained on all wells

DNN trained on 7 wellsBlind wells

Blind locations

 We then extended our algorithm to pre-

stack data where we use a hybrid

theory and data model to predict

reservoir properties:

– Rock physics relationships were used

to simulate a large, idealized set of

well logs and synthetics.

– Pre-stack synthetic data was used to

train the DNN to estimate elastic and

rock properties.

 Unlike our previous example, only

one well is used in this analysis.

Angle Gathers

42

 The seismic data above was

processed in a manner suitable for

simultaneous inversion.

 Our flow is shown in the next slides.

Gulf Coast example

Synthetic Catalog Workflow

Step 1: Petrophysical

Analysis

GR Re

s.

Vp Rho

D
e
p

th
D

e
p

th

Vclay Phi Sw

Step 2: Rock Physics Model

Calibration

Establish the rock physics model

Vp, Vs, r = RPM(f, Vcl, Sw, MSI)

Rock Physics

Template of the

unconsolidated (soft)

sand model extended

to the intermediate and

stiff sand models

through the Matrix

Stiffness Index (MSI)

parameter (Allo, 2019).

43

Synthetic Catalog Workflow

Step 3: Statistical analysis

Vclay Phi Sw MSI

D
e
p

th

a) Define lithofacies and calculate

the background trend

b) Establish the statistics for each

lithofacies: the covariance matrix

V
c

la
y

P
h

i
S

w
M

S
I

Vclay Phi Sw MSI

c) Model the vertical

continuity: the spatial

variogram

Exponential variogram

Data variogram

The variogram influences the

vertical resolution of the

simulations generated in next

step.

44

Synthetic Catalog Workflow

Step 4: Elastic Properties

Simulations

Vp RhoVp/VsVclay Phi Sw MSI

D
e
p

th

Vp RhoVp/VsVclay Phi Sw MSI

D
e
p

th

Step 5: Synthetics

generation

T
im

e
T

im
e

Angle

Angle

Step 6: DFNN training and

application

Sw
0

1

T
im

e

Saturation prediction

45

 Any log curve can be specified as

the target. In the example the P-

wave impedance is the Target log.

 The input attributes are calculated

from the near, mid and far angle

stacks calculated from the

synthetic gathers.

 In addition, the low-frequency P-

wave impedance strata model is

input.

Training and validating the DNN operator

46

Applying the DNN operator to the real data

Low-frequency Strata model Ip from inversion Ip from DNN

Applying the DNN operator to the real data

The density

predicted by DNN

gives a higher

resolution result

than pre-stack

inversion and

appears to tie the

well better.

48

Low-frequency Strata model Density from inversion Density from DNN

Gas Saturation

49

Application of DNN lithology prediction to real volume

50

Porous

gas sand

Shale

wet sand

Summary

 In the first part of the talk, I gave a detailed comparison between conventional and

machine learning inversion using a simple example.

 I then moved to a hybrid theory-guided data science (TGDS) model approach for

inverting large datasets, in which:

– Rock physics and seismic theory is used to generate synthetic data which is then used to

train the neural network.

– The theory is then used to generate data not present in the well data.

 Both post-stack and pre-stack inversion examples were shown

– The post-stack results were nearly identical.

– The machine learning pre-stack inversion had higher frequencies than the theory based

method.

– The DNN allows for nonlinear models so we can estimate target variables such as fluid

saturation or lithology.

51

Questions?

53

Appendix: The complete neural network solution

 Here is a diagram of the complete neural network we will use, consisting of an

input layer, “hidden” layer, output layer and backpropagation algorithm:

Input

layer

“Hidden” layer
Output

layer

 The key innovation in the network are the three neurons in the last two layers.

Backpropagation

54

The feedforward neural network

 In the first part of the process we

apply two sets of bias and gradient

weights to the seismic samples.

 This can be written in vector or

matrix format as follows, where

superscript (1) is the first layer:

(1) (1)

(1) (1) (1) (1) 01 02

1 2 (1) (1)

11 12

1 0.05

1 0.15

1 0.15

1 0.05

w w
Y SW

w w

 
   
            
 

 

y y 

 

(1) (1) (1)

1 01 11

(1) (1) (1)

2 02 12

 ,

 ,

where 1 1 1 1 ,and

.05 .15 .15 .05

T

T

w w

w w

 

 



  

1

1

1

y s

y s

s

55

The logistic function

 The difference between linear and

nonlinear regression is the neurons.

 Each neuron applies a linear or nonlinear

function to the weighted inputs.

 The most common nonlinear function is the

logistic (sigmoidal) function, shown here.

 The mathematical form of the logistic

function is:

1
()

1 exp()
f y

y


 

 '() () 1 ()f y f y f y 

 A computational advantage of the logistic

function is its derivative, given by:

56

Applying the logistic function in the “hidden” layer

 Thus, we will next apply the logistic

functions in the “hidden” layer.

 This gives two intermediate

estimates of the reflectivity, which

again can be written in vector or

matrix format:

 

 

(1)

1 (1)

1

(1)

2 (1)

2

1
ˆ ,

1 exp

1
ˆ .

1 exp


 


 

r
y

r
y

 
 

(1) (1)

11 12

(1) (1)

(1) (1) (1) (1)21 22

(1) (1) (1)

31 32

(1) (1)

41 42

ˆ ˆ1

ˆ ˆ1 1
ˆ, .

ˆ ˆ1 1 exp

ˆ ˆ1

ij

ij

r r

r r
R F Y r

r r y

r r

 
 
    
   
 
 

57

The output layer

 Finally, we get to the output layer,

shown by the superscript (2).

 This involves first computing a

weighted sum of the intermediate

wavelets with a new bias and two

gradient weights:

(2) (2) (2) (1) (2) (1)

0 1 1 2 2

(1) (1) (1) (1) (1)

1 11 21 31 41

(1) (1) (1) (1) (1)

2 12 22 32 42

ˆ ˆ ˆ , where:

ˆ ˆ ˆ ˆ ˆ , and

ˆ ˆ ˆ ˆ ˆ .

T

T

w w w

r r r r

r r r r

  

   

   

1y r r

r

r

 (2) (2) (2) (2) (1) (2) (1) (2)

0 1 1 2 2
ˆ ˆ ˆ ˆf w w w   1r r r y

 Our second function is linear, giving:

 Or, in matrix form:

(2) (1) (2) (2) (2) (2) (2)

0 1 2
ˆ , where .TR w w w    r w w

58

The logistic function

 The difference between linear and

nonlinear regression is the neurons.

 Each neuron applies a linear or nonlinear

function to the weighted inputs.

 The most common nonlinear function is the

logistic (sigmoidal) function, shown here.

 The mathematical form of the logistic

function is:

1
()

1 exp()
f y

y


 

 '() () 1 ()f y f y f y 

 A computational advantage of the logistic

function is its derivative, given by:

59

The backpropagation algorithm

 To find the optimum weights for our neural network a procedure called error

backpropagation is used.

 The algorithm can be summarized as follows:

– Initialize the weights in both layers to small random values.

– Starting with the weights in the output layer, change the weights so as to

minimize the error between the computed and desired output values.

– Backpropagate the error minimization for all layers.

– Iterate until an acceptable error is found.

 Let’s now look at error backpropagation in more detail.

60

The backpropagation algorithm

 The first step is to compute the error between the output of the network (starting

with the initial weights), which is given by:

(2) (2)ˆ= r - r

61

The backpropagation algorithm

 The details of the backpropagation algorithm are as follows.

 We start by iteratively updating the weights in layer 2, where for the k+1st

iteration, we get:
(2) (2) (1) (2)

(1) () () ()

T

k k k kR  w w 

 With the exception of the reflectivity matrix note the similarity of this equation to

the steepest descent equation.

 The second step is to update the weights in layer 1 as follows:

(1) (1) (1)

(1) () ()

(1) (1) (1) (2) (2)

() () () (1) (1)

 , where:

(1)

T T

k k k

T
T

k k k k k

W W S

R R



 

 

       w



 

 The key new idea in backpropagation is the use of the derivative of the logistic

function, where o implies an element-by-element multiplication of two matrices.

Derivative of

logistic

function

