Inversion and machine learning

Brian Russell

{cGG

cgg.com Passion for Geoscience

Introduction

At the EAGE meeting in London | gave a talk on machine learning applied to
inversion at the HPC booth, and was pleased to be invited by Martin to give
that talk again in Houston.

But | have discovered that a big impediment to understanding machine
learning is getting inside the “black box” and seeing what is really going on.

So at the start of this talk | will use a simple geophysical problem to try and
demystify machine learning algorithms and show that, like physics-based
inversion, they have a mathematical structure that can be understood.

| will then move to a real-world example and show how to extend our simple
single-layer neural network to the deep, or multi-layer, case.

The results will suggest that we need to use a judicious combination of both
the machine learning and physics-based methods.

2

== | heory-based versus machine learning analysis

= Alarge number of geophysical problems can be linearized and expressed as:
d = Gm, where:

d = the input data, G = a geophysical transform, and m = an underlying geological model.

= |f we know the parameters in G, the solution can be found using least-squares:
m=(G'G) G'd

= However, in the machine learning approach we present the input and desired
output to the algorithm and let it find the relationship:

Machine Learning

Input = d Algorithm

—> Desired output = m

== Deep Neural Networks (DNNSs)

= The newer machine learning techniques
use Deep Neural Networks (DNNSs) with
many hidden layers.

= |n the figure, the inputs are shown as the
red circles, the hidden layers as the yellow
circles and the outputs as the blue circles.

= The lines between the circles are weights
which must be learned by the network.

() Hidden Layer @ Output Layer

= But what is a hidden layer, and how do we ~ ®'nPuttaver
train the weights?

= | will use a simple model and a network with (
a single hidden layer to explain this. Q

== |he geological model

Impedance
- * - 3
= The model consists of a shale of Seology i;”é; 3;;330 ze‘:e;t'”[']t‘i
. -0. +U.
P-wave impedance p .V, = |,= T —
4500 m/s*g/cc, which both Shale | — - —
overlies and underlies a wet — — — | =
sandstone of imped Vo= Wet Too |E
Pedance p Ve = - | tLtLtLtL . o T
_ * : Sand | « * e e e e e . | @
|..= 5500 m/s*g/cc, where pis E 400
density and V is P-velocity. Shale | — — . — ‘
= The reflection coefficient formula - v

gives two reflection coefficients:

o — pV, 5500 — 4500 4500 — 5500
ri: i+1% i+ i :>r1: =+0.1 :>r2: —
o+ pV, 5500 + 4500 4500 + 5500

== Se|smIC Inversion

= The two reflection coefficients
can be exactly inverted back

Impedance
(m/s*g/cc) Reflectivity
4500 5500 -0.1 0+0.1

to impedance using the shaie TR
recursive inversion formula. - —
= This assumes that the first ;“':Eg IR %300 «
impedance is correctly — _ £ 400
estimated. Shale | — — . — ‘
= The recursive formula is as - v
follows:
1+7 1+0.1 1-0.1
[, =pV,.— — i V., = = =4
R & .1_ri = p,V, =4500 1 5500 = p,V, 55001+O 1 500

6

== Creating the seismic trace

= \We then convolve the
reflection coefficients
with a Ricker wavelet:

Amplitude
-1 0 1

2\

/

n\

A

Time

)

Shale

Wet
Sand

Shale

Geology

Impedance

(m/s*g/cc)

Reflectivity

4500 5500 -0.1 0+0.1

(98]
o
o

Time (ms)
I
o
=]

= The convolution equation as follows, where
the wavelet has be reduced to 3 points:

7

i

S=g*r, where g =

»

Seismic
Amplitude
-0.1 0.0+0.1

/

= wavelet

S

== | he convolution equation

= The convolution equation can be also be written as a matrix equation:

s=Gr
= In the above equation, S is a vector of seismic values, r is the vector of
reflection coefficients given by: [+01
| -0.1f

= and G is the geophysical matrix with the wavelet in two columns spaced by
the number of samples between reflection coefficients:

(05 0 |
1 -0.5
G =
-05 1
8 | O _0.5_

== [he synthetic trace

= Performing the matrix multiplication, = Here is the result of the convolution, where
we get the following seismic trace: a spline fit has been used to interpolate

_ _] . the values between the spikes:
-05 0 —-0.05

0.15 4
1 —-0.5 |:+O.1:|_ +0.15 0.10 //I\\
05 1 ||-0.1| |-0.15 0.05

TV T AN

0 -05] | +0.05

—0-.05 \ /
-0.10 \ /

= This is an example of seismic “tuning” 0.15 \I/
H H “ ” 0 0.04 0.08 0.12 0.16 0.20
since the wavelets interfere or “tune” to
appear as a 90 degree phase wavelet
and show an amplitude increase.

time (sec)

= The original reflection coefficients are
displayed, showing the effect of the
o wavelet.

== |nverting the tuned response

= Performing recursive inversion on the tuned seismic response creates two
extra layers with lower impedance:

Tuned Acousticlmpedance
Reflectivity (m/s*g/cc)
Geology 0.15 0 +0.15 4500 5500
4500 B -
Shale - =
4071 = = !
A_ Wet *te & & & @ e * @ - |
| = 5508 Sand | . 2. .00, .t E:> :
4071 — — — - I~
Shale | — — '
1 4500 e — - -

= The “hat” over the impedance indicates that this is only an estimate of the correct
answer (the dashed curve is the estimate and solid curve the true impedance).

i (%ur objective is to extract the true reflectivity from the synthetic seismic trace.
1

=== [Deconvolution

= The geophysical way to extract the reflectivity is to deconvolve the wavelet.

= Since the G matrix is not square (i.e. there are more knowns than unknowns),
this involves the least-squares approach, which is written:

f=(G'G)'G's=G's, where f = the reflectivity estimate,
and G™ = the generalized inverse.

= |f we know G exactly (which we rarely do!) the answer is perfect:

~0.05 |
—-06 0.8 0.2 —0.4} +0.15 {+O.1}

*

r=r=G s:{

04 02 08 -06|-015| |-0.1
+0.05_

11

== [he machine learning approach

= The deconvolution approach to extracting reflection coefficients from seismic
data produces good results as long as we are able to estimate the wavelet.

= Now, let’s look at the machine learning approach, which we will implement as
a supervised neural network, where we know both the input and output:

Input = seismic Machine Learning Desired output =
trace S Algorithm reflectivity r

= That is, we will let the machine learning algorithm learn the weights that will
transform the seismic trace into the reflectivity.

= This is actually a type of nonlinear regression, so first we will discuss the
linear regression approach.

12

== Linear regression

= In linear regression, we estimate the two unknown weights W, (the intercept
or bias) and w, (the slope) in the equation:

r=Ww,+Ww,sS

= Similar to deconvolution, linear regression can be written in matrix format as
follows, where the reflectivity has been padded with zeros to make it the same

length as the seismic trace:
~0.05 |
+0.15

1

1
r=Sw=

1 -0.15

1

+0.05

= The column of ones in the S matrix is there to multiply the bias term w,,.

13

0
+0.1
-0.1

0

<\}

== Linear regression

= Since the S matrix is not square, this again involves the least-squares approach,

which is written:

w=(S"S)™"S"s=S"r, where S = the generalized inverse.

. . . 0.25 025 0.25 0.25
= Plugging in the values gives: W=Sr =

-1 3 -3 1

0

0

+0.1
-0.1

= This gives w,= 0 since the seismic and reflectivity both have zero mean.

= The second weight, w;= 0.6, is simply a scaling coefficient which matches the

amplitudes between the seismic and reflectivity.
14

== Linear regression

= Applying the regression coefficients gives:

= This can be recursively inverted to give:

4500 |
4238
5076
4238

_>
I

| 4500

Shale

Wet
Sand

Shale

GGGGGG
aaaaaa

tttttt

[—0.05] [-0.03]
A +0.15 +0.09
r=w;s=0.6 =
—0.15 —0.09
+0.05] | +0.03
Scaled Acousticlmpedance
Reflectivity (m/s*g/cc)
-giLELiEE. 4500 5500
— -
|
I—
|
=
— - I
|
| I_

15 * For the sand layer, the result is worse than before regression!

== LInear regression

= Another way to visualize the weights is to fit Least-squares regression

a straight line to the reflection coefficients T T T T
versus seismic amplitudes, as shown here. 1; IR
= The true values are shown by the black 5 05 +] +
points and the line represents the equation: 5 ool tt i@ S S—
f =0+0.65 -10 -—%-—— I - -:L-- --*:- - %-—- -:*--
15 L SN NS S S S

= In deconvolution we got a perfect fit because S S U S SN N

our model assumptions were correct. c7 T e

= In least-squares regression, the points are fit in a “best” least-squares sense.

6 U

== Steepest Descent

In both the deconvolution and regression methods, we inverted the full matrix.

For the large datasets used in seismic analysis this is impractical and we would
normally use iterative techniques which do not involve calculating a matrix inverse.

The simplest iterative technique is called gradient descent, or steepest descent
(SD), in which we iteratively arrive at a solution by starting with an initial guess.

The steepest descent algorithm for regression is written:

Wiy = Wy + %04, Where k =0,..., K,

W)= Weights at k +1% iteration, ¢, = learning rate, and 5(k) (S'S)wy, —S'r.

Note that the gradient g, Is the difference between the right and left sides of
the equation used as a starting point for full least-squares inversion.

17 C\

Conjugate Gradient and Stochastic Gradient Descent

A more efficient iterative technigue is the conjugate gradient (CG) algorithm, which
takes steps which are orthogonal to the change in gradient.

For linear problems, it can be shown that the CG algorithm always converges in
the same number of steps as the number of unknown weights.

A variant of the SD algorithm is called the least-mean-square, or LMS, algorithm
which has applications in heart monitoring and noise cancelling headphones.

In the LMS algorithm the weights are trained one sample at a time and thus the
method is time-adaptive.

In neural network applications, the LMS algorithm is called stochastic gradient
descent (SGD).

The figure on the next slide shows a comparison of all three algorithms applied to
our regression problem.

8 U

== Comparison of gradient descent methods

Here, SGD is shown by the jagged line, CG
by a dashed line and SD by a solid line.

At this scale both CG and SD appear to take
two steps, but at a larger scale we would see
that SD actually takes several more steps.

Each of the “jags” in the SGD algorithm
represents an “epoch”, where we cycle
through the four samples.

10,000 epochs were used and the SGD
algorithm still has not converged.

The other two methods are in “batch” mode,

with all the samples used simultaneously.
19

157

-0.5

SGD (jagged), CG (dash) and SD (solid) paths

\

/

-0.5

0 0.5
Weight 1

1.5

= The feedforward neural network

= We saw that the straight-line solution given by linear regression did not give a
perfect fit between the true seismic and reflectivity values.

= Neural networks, the oldest and best known type of machine learning algorithm,
allow us to extend linear regression to nonlinear regression.

= The neural network we use has two different names which seem contradictory:
the feedforward neural network and the backpropagation neural network.

= The term feedforward refers to how the output is computed from the input if the
weights have already been determined.

= The term backpropagation refers to how the training of the weights is performed,
using a technique called error backpropagation.

= Let’s now describe the algorithm and apply it to our problem.

20 \

== | he complete neural network

= Here is a diagram of the complete neural network we will use, consisting of an

input layer, “hidden” layer, output layer and backpropagation algorithm:

= The key innovation in the network are the three neurons in the last two layers.

21

“‘Hidden” layer

Neuronl

WSy A 0)

O,

Input
layer

O,

W’{:zj

1r523

A

5 layer
W(":I y

Output

Neuron 3

Backpropagation

Update weights to reduce error |1

5 =r

_F®

[

\

== [he logistic function

= The difference between linear and

nonlinear regression is the neurons.
= Each neuron applies a linear or nonlinear J)

function to the weighted inputs.

= The most common nonlinear function is the
logistic (sigmoidal) function, shown here.

= The mathematical form of the logistic

function is:

1
1+exp(-y)

F(y)=

22

1.0

0.5

0

'5 0 }:

= A computational advantage of the logistic
function is its derivative, given by:

f'(y)=f(y)(1-f(y))

= Applying the logistic function in the “hidden” layer

= The inputs are now weighted by

four weights and fed into the first
two neurons. @

Neuron 1l

= Application of the logistic function
to these weighted inputs gives two
intermediate estimates of the
reflectivity:

A 1 .
£ = , = This is called a “hidden” layer because
1+exp —y(l)) - : :
1 the algorithm estimates the weights. e 1
. . . i M)
PO — 1 = Finally, these intermediate values are L+exp(-y;”)
1+ exp() weighted and a final logistic function is

’s applied: "\

== | he backpropagation algorithm

= To find the optimum weights for our neural network a procedure called error
backpropagation is used.

= The algorithm can be summarized as follows:
— Initialize the weights in both layers to small random values.

— Starting with the weights in the output layer, change the weights so as to
minimize the error between the computed and desired output values.

— Backpropagate the error minimization for all layers.
— Iterate until an acceptable error is found.

= Let's now look at error backpropagation in more detail.

24

== | he backpropagation algorithm

Neuronl

Update weights to reduce error Id 5 =p ¥

= The first step is to compute the error between the output of the network:

5P =r-f®
= Then, this error is iteratively reduced using gradient descent (see appendix).

P
25 QL

== Applying the neural network

Backpropagation starts with a random guess of the initial weights at step k = 0.

Taking values from a normal distribution between —1 and +1, our initial weights are:

o W 0.0940 0.4894 Vo | [0.3736
wQ =| Moo teeo) || T | and w) =| w(|=|-0.633
O Twy, Wil | [-0.4074 —0.6221) R |

Wz(o) __0-263_

First, we scaled up the input and output values by a factor of 10 since neural networks
work best with data normalized between -1 and 1.

Applying the backpropagation technique with 10,000 iterations and « = 0.2 produced
the final weights given by:

W ooo) | | 2.3384

1) 1)
W(%)OOO) - W(ﬁ)(lOOOO) W(()i)(mOOO) - o0 DO , and W((120)000) - V\/1(51)0000) =| —2.5254
W11(10000) W12(10000) —3.7842 -3.8453 (2)
| WiToooo) | | —2.3382

26

=== Neural network results

= The computation of the final reflectivity is therefore given as:

2.5584 2.3382

£ =0.1%| 2.3384 - -
1+exp(6.1001+3.7842s;) 1+exp(—6.0617 +3.8453s;)

= The values of the final reflectivity are as follows:

(-0.0030]
(o | +0.0999
(10000) — —0.0999
| +0.0030

= This is an almost perfect result and can be made as close to the correct

answer as we want by increasing the number of iterations.
27

=== Neural network results

= As with the regression result, we can
crossplot the output reflectivity against the
input seismic.

= The result is shown on the right.

= Note the almost perfect fit at the input and
output points, but the strong “imprint” of
the logistic function.

Reflectivity

Meural Metwork fit after 10000 iterations

-3 -2 -1 0 1 2 3
Seismic

= The obvious question is whether this mathematical transform has any

relationship to the physics of the problem.

= Now let’s look at the weights themselves.
28

== | he weights after each iteration

w0 = solid, wl = dot, w2 = dash

c000 8000 10000

4000

2000

w00 = solid wl0 = dash,w0l = dashdot,wll = dot

10000

e000

lteration number

2000

! m ! ! L
i 1 i i —u. i
! m ! ! .
| 1 | | '
e e PRS- L
" ! " " T
! ! ! ! Pyl
! m ! ! N
|] | | [
S ISR TN ISR S O N
L L RN
i 1 i i i —" i
! m ! ! .
| 1 | | '
! m ! ! Pl
B B B B B S S
! m ! ! R
|] | | [I
! ! ! ! Lok
! m ! ! P
- ———— - S R S N S S
| | ! | Ly
I
.
! m ! LA L
B e pt B L N
N oM & e e m
| | |
anjea by
S NN SR S R - .
| b)
' ! ! I
b {
- 8
| I 1
o ! !
) I I
ty ! ! 1!
I O I s
Py | [
P ||
Py ! 1!
L D 1
PN !
m PN !
e
© v o = ,__u

anjen ybiam

8000

4004

lteration number

"

= The weights as a function of iteration
for the three second-layer weights.
= Note the change after iteration 2000.

29

for the four first-layer weights.
= Note the change after iteration 2000.

= The weights as a function of iteration

== | he |least-squared error

= Here is the least-squared error after each

Backpropagation Error

iteration, computed by the formula: 14 / R T T FRE
Z(r i)’ | \ i | | |
= The error can be lelded Into four regions: s bl | | | |
— From iteration 1 to iteration 10 there is a . | i | | |
dramatic drop in the error. ' ! ! | |
— Between iterations 10 and 2000, the changein °*
the error is almost flat, indicating we are trapped oz
in a “local minimum”. 00 —
— Between iterations 2000 and 3000 there is 0 2000 4000 6000 8000 10000
another sharp decrease in the error. lteration number

— After iteration 3000 there is a gradual decline in
the error towards zero.

30 &\

=== The |ocal minimum

= Below, the least-squared error of the linear
regression has been plotted at iteration 2000:

Backpropagation Error
1

. : | : .

12 —+- +
: |
1 !
10 1 + +
| !
| |
L 0ET + +
5 | :
E o 4 1
' | |
04t + +
.
1
]
n
I

0 2000 4000 6000 8000 10000

Iteration number

= The perfect fit suggests that the local minimum
is close to the least-squares regression.

= This is confirmed by comparing the two plots
at the right.

31

Reflectivity
[=]
(=]

20 F=7"
i

Reflectivity
[=] (=] = -
(=] [¥] (=] [¥]
}

|
=
Ky}

MNeural Metwork fit after 2000 iterations

| | | | : | |

-3 -2 -1 o 1 2 3
Seismic

Least-squares regression
A b B

| :
—10 ot

| 1 1 1 1 |

—1.5 At
] 1 1 1 1]
1 1 1 1]

Seismic

= Summary of our simple model results

True Tuned Seismic Scaled Neural Network
Reflectivity Reflectivity Reflectivity Reflectivity
Geology 0.1 040.1 -0.15 0 +0.15 01 0+0.1 -0.10+01
Shale | — — — B
Wet oo o % o v . . - —
Sand | e ® 2 ' ca & = & o o
Shale | — — = —
(a) (b) (c) (d)

32

(a) shows the true reflectivity and the result of a “perfect” deconvolution,
(b) shows the convolution of a symmetrical wavelet with the reflectivity,
(c) shows the least-squared scaling of (b) to match (a), and

(d) shows the neural network prediction of (a) from (b).

== Seismic Inversion on real data

= Qur first example was a simple numerical example that we could do by hand.

= Normally,

inversion is done on multiple CPUs or GPUs, where the input is on the
a low frequency model in the center and the impedance inversion on the right:

left,

Inversion

g

10 21 23 25 27 29 31 33 35 37 39 41

View 1

I

Seismic

RS
1144d4444d321440d4d33111d 404444133 11T 3T Y I YNNIV INYY)

Rt

f

{

Ll

LELLCCCI 0 TECCCL

ssssdidecdill])

AN
1135355555354

i

DD

)
DI np»m»»)

}

< (-
AP
P
—

—=
Py

e ——
T
N
b v«m&w
g
e
. Wy
g~
———
. N R
o
N Y T
: ———
: ———
———
+ b e 1
P
=T
e v i —_ |
: R ——
= 2 P
N =
- e
b -]
- Py
L -
. AT
. W g
ZEa

il Sy

PR

I

TN T T ey v Ty

LA

33

== Supervised Learning (Emerge)

= Hampson et al. (2001) described a supervised

learning methodology to predict log properties lIke [Tugetiog Atibute 1 Atibute2 Atribute 3
impedance using the following flow:
W1 w2

— The input of multiple attributes generated from w3

the seismic data.

— The development of a statistical relationship by i
analyzing a set of training data at well locations. i

il

— The use of either a linear (multivariate
regression) or nonlinear (single hidden layer
neural network).

— The use of cross-validation to estimate the
reliability of the derived relationship.

34

s

== Deep Neural Networks (DNNSs)

35

We have updated that inversion flow using a
Deep Neural Network (DNN) with many
hidden layers.

If a neural network has many hidden layers it
can model complex nonlinear relationships.

The weights are solved as large nonlinear
inverse problem using iterative techniques.

— The solution for the weights is non-unique.
Similar to linear methods:
— The weights are calculated on training data.

— To ensure the network is not over trained the
network is tested on a validation data set.

@ nput Layer

() Hidden Layer

@ Output Layer

L

== Do we have enough training data?

= Deep neural networks have many
layers and parameters, which

increases the risk of overfitting, where:
— Overfitting is characterized by observing:

— Small training error

— Large validation error

Error

= Possible solutions
— Reduce the number of parameters / layers
— Regularization, early stopping
— Increase the amount data:
— Needs to be labelled datal! Training Error
— Synthetic data =

— Theory-guided data science _ # of Parameters
Bias < > Variance

36

== | heory-guided data science models (TGDS)

= Arecent paper by Karpatne et al Hight T
(2017) suggests a new approach to S |2
scientific discovery, which combines g 9
both theory and machine learning. é - Theory-guided
= Traditional theory-based models make e | B Data Science Models
. . . g = (7))}
high use of scientific knowledge. § _c?d (TGDS)!
= However, the newer data science- D g‘
based models make high use of data. o ||
o | F
= Theory-guided data science (TDGS) - Data Science Models —>
modelling combines the best of both. Low >
Low Use of Data High

= But this approach requires a large

number of representative samples. lKarpatne et al., 2017, “Theory-guided data science:
A New paradigm for scientific discovery”

== Machine Learning Post-stack Inversion

= Following Karpatne et al. (2017) our Machine
Learning Inversion uses a TGDS model, where:
— We build a 2D impedance model from well Theory-based model
control, using 12 wells in all.
— We generate post-stack synthetics for each

location using a wavelet derived from the seismic. >t ot !
— The outputs of the theory-based component are I
then used as inputs in the data science T 3
component. ' &
- 2

= That is, the synthetic data is used to train and
validate a DNN.

= The trained DNN is then applied to the real data.
38 &\

== Conventional inversion (top) Vs. DNN (bottom)

View 2 Plot Data: inverted_Zp
Inserted Data: Computed Impedance P

1000

1050

1100

—_ m/s)*(g/cc
Inline 1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 102 105 108 111 114 117 =~ !)13(343)
well 01-08 08-08 09-08

Impedance

12536
11979
11422
10865
10308
9751
9194
8637
8080
7522
6965
e 6408
5851
5294
4737
4180

Xline: 42

View 3 Plot Data: DFNN
Inserted Data: Computed Impedance P

Inline 1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 102 105 108 111 114 117

well 01-08 08-08 09-08

1000

1050

1100

Time (ms) < | 1

-
blackfoot_horizons_1 -
T Ras J

»

Impedance

m/<)*(/<c))
13093
12536
11979
11422
10865
10308

| 9751

9194
8637
8080
7522
6965
6408
5851
5294
4737
4180

39 lina+ 42

e

Inversion Inversion

== Comparison at the 09-08 well DNN

Well log
E @? 1T
N . |

= The results look amazingly similar. T [
i N S '%
= Note that the character of the results is LIS HELEH
very similar, with slight differences in < o |
amplitudes. | %
[0 e O e ,,,E:; 5{,,,,},7

Vah i A M

, : : SHER
= Where there is a noticeable difference, =gEE ;
(arrow), the DNN matches the log curve p ;_ 2
better. T=E 1] T
| [ol
4 | \ ‘:

IR

X
\ I~
Ay

\
A

NN
\

7

40
NS AN

== PBl|ind locations

41

View 1 . Impedance
Inline 1357 91 1313151719212325 2727 2931333537 393 DNN tralned On a" WeIIS
Well 01-08 08]08 09-08 = = = - - - ~

1000

blackfoot_horizons 9751
9194
8637
8080

7522

85 87 89 91 93 95 97 99 102 105 108 111 114 117 -
1050

VT = 6965
1100 e 6408
5851

Time (ms)
Xline: 42 Inline: 95 Time (ms): 977.04 Color Amp: 9541.67

| 5294
v 4737
4180

/5)*(g/cc))
13093
12536
11979
11422
10865
10308

View 2

Inline 11 @313 Bllnd WeIIS 37 @93 83 85 87 89 91 93 95 97 99 102 105 108 111 114 117 -

Impedance

13093
12536
11979
11422
10865
10308
9751
9194
8637
8080
7522

6965

SRER: v - Sl
L] LRERE IAERE S Hla 6408

well

1050

blackfoot_horizons_1

ST

5851

5294

| - 4737

Time (ms) . 4180
¥Xlina* 47 Tnline* @S Tima fme): Q77 N4 Cnlar Amn* QR72 2

m/s)*(g/cc))

a

Gulf Coast example

= We then extended our algorithm to pre-

42

stack data where we use a hybrid
theory and data model to predict
reservoir properties:

— Rock physics relationships were used
to simulate a large, idealized set of
well logs and synthetics.

— Pre-stack synthetic data was used to
train the DNN to estimate elastic and
rock properties.

Unlike our previous example, only
one well is used in this analysis.

Angle Gathers

Trace Data: angle_gather
ted Curve D

\)))n)()) i i

vvvvvvvv

»D»')»»,
BN

s
b

13433414

,,,,,,

2224
NI

3| i

33hhih})

LA
nnnnnnn

il !m

The seismic data above was

processed in a manner suitable for
simultaneous inversion.

Our flow is shown in the next slides.

)

== Synthetic Catalog Workflow

-~

Step 1: Petrophysical

~

Analysis
Re Vp Rho
% p}
:
B F
T
Vclay Phi Sw

/ Depth

43

4500

Vp (m/s)
3590

1500 2500

Step 2: Rock Physics Model
Calibration

Rock Physics
Template of the
unconsolidated (soft)
sand model extended
to the intermediate and
stiff sand models
through the Matrix
Stiffness Index (MSI)

0 01

P

02 03 04 parameter (Allo, 2019).
Porosity

Establish the rock physics model
Vp, Vs, p= RPM(g, V, S,,, MSI) /

== Synthetic Catalog Workflow

/a) Define

Depth

44

the background trend

and calculate

Vclay Phi Sw MSI
g F £

\”\

e &

Step 3: Statistical analysis

b) Establish the statistics for each
lithofacies: the covariance matrix

Vclay

Phi

Sw

¢) Model the vertical \

continuity: the spatial

1.0+

0.8 \
:— Data variogram

wl
0.2 \

T T T T T T
0 50 100 150 200 250

The variogram influences the
vertical resolution of the

simulations generated in next
step.

f

QQ

== Synthetic Catalog Workflow

generation

Step 4: Elastic Properties /Step 5: Synthetics\ Aep 6: DFNN training anh
Simulations

application

mlime

Vp/Vs

Vclay Phi Sw MSI Vp Rho
G
1 §
()
o}
V[i
MSI Vp Vp/Vs Rho

Vclay Phi Sw
45

@ Input Layer) Hidden Layer

@ Output Layer

Time

== [raining and validating the DNN operator

= Any log curve can be specified as
the target. In the example the P-
wave impedance is the Target log.

= The input attributes are calculated
from the near, mid and far angle
stacks calculated from the
synthetic gathers.

= In addition, the low-frequency P-
wave impedance strata model is
input.

46

s @ a2 a

Time (ms)

1800
2000 I
200

2400

2600

2800~

3000]

P-Impedance_trans

16492.1 (ft/s)* 26525.7|

P-Impedance(*)

near_stack

N =

far_stack

o’

1:.'

mid_stack
-0.0587079 0.0720172 -0.0434738 0.0618511 |17187.5 (ft/s)* 25040.1
I 1T I | T 1

& @ |wel 0100 v| % Datumi

Emerge trainin
Target log type: P-Impedance ,

Sy_model_P-Impedance

far_stack

bl

R

mid_stack

——
7
———
>

v

—
——
|
=

Sy_model_P-Impeda

QQ

== Applying the DNN operator to the real data

Offset (m)
Well

2100

2200

2300

2400

2500

2600

2700

Time (ms)

Xline

0 0 0 0 0
Well_1

1515 1519 1523 1527 1528 1532 1536 1540 1544 1548

T R T B e 7 B A s e S R

<

111

ft/)*(g/cc))

26918

26450

25982

25514

25046

24578

24110

23642

23174

22706

22238

21770

21301

20833

20365

19897

19429

18961

18493

18025

17557

17089

16621

16153

15685

Xline

Angle
Well

2100

2200

2300

Time (ms)

Ip from inversion |*

1515 1519 1523 1527 1528 1532 1536 1540 1544 1548
1 1

1 1 1

st

Well_l

<

1

Impedance
ft/s)*(g/cc))
26918

26450
25982
25514
25046
24578
24110
23642
23174
22706
22238
21770
21301
20833
20365
19897
19429
18961
18493
18025
17557
17089
16621
16153

15685

View 3

Offset (m) 10
well

Ip from DNN

—__ Inserted Data: P-Impedance
Xline 1515 1519 1523 1527 1528 1532 1536 1540 1544 1548

10 10 10 10
we!"‘ll.v...,...l.........l..:

2200

2300

Time (ms) <

-

Impedance
ft/s)*(g/cc))
26918

26450
25982
25514
25046
24578
24110
23642
23174
22706
22238
21770
21301
20833
20365
19897
19429
18961
18493
18025
17557
17089
16621
16153

15685

== Applying the DNN operator to the real data

Low-frequency Strata model |+ Density from inversion Density from DNN

oy Color Data: nverted_on. Den View 3 Cotor Data: DFNN_Density_T00

Inserted Data: Density . Inserted Data: Density) Inserted Data: Density
Xine ~ 1512 1516 1520 1524 1528 1529 1533 1537 1541 1545 1549 & 1512 1516 1520 1524 1528 1529 1533 1537 1541 1545 154' 4 Xine 1508 1512 1516 1520 1524 1528 1529 1533 1537 1541 15¢ 4
Offset (m) 0 0 0 0 1 1 1 1 0 1

25000 |offset(m) 10
Well Well_t Well

The density
predicted by DNN
gives a higher
resolution result
than pre-stack
inversion and
appears to tie the
well better.

Well_1 Well_1
" S

2300

Time (ms) <] Time (ms)‘

Tnline: 14770 Xline: 1507 Time (ms): 2630 Color Amn: 2.33765

48

Gas Saturation

% @l -) ©

Step: 1

>

14770

@

inine

L

28 e

QA K Q&I

-

@

ﬂ_o
View 1

Saturation

f

o N m e N m o ~om
-8 5 2 B 5 88 5 @
cS g 8 8 8 8 B g 8
$S8 § 8 § & & & a
€4 S 6 8 6 8 o 8 o
8

-
1

10

10

1528 1529 1533 1537 1541 1545 1549 1553 1557 1561 1565

0.9250

0.9167
0.9083

0.9000

0.8917

0.8833

0.8750

0.8667

0.8583

0.8500

0.8417

=
o
=
©
4]
*
b3

0.8333
0.8250

0.8167

0.8083

0.8000

g5R7
B
52
NR
m..
S g
ESBg
83 -
el -
sE8 3§ =
85 2
&
Il
A
o
So
a2
A
©
=]
A
4
o~
o
A
4
o
-
2
2
A
<
2
2
a
=
So
B2 |
a :
H
= o o o o = ° o >
E = = s = g 3 3 0
= =1 = I @ T " o E
~ 3 & & BN] & & & <
z (2% o
3 |E£3 £
S IXos E
S N m o N @m o N m e N Mmoo N m o N me N me N oo o
-8 5 B 2B 5B 8 8 53 8 3 B 238 5 8 388 88 5 8 8 5 &8 8
§E58 2 2 8 2 8B 2 3 2 8 2 23325 8Bz 382 8 28
£ 8S @ 9 a a a a aq a a & a g @ @ @ @ @2 QB I @]
B4 c S S 6 6 5 6 6 S 65 6 5 S 6 6 S 6 S S S 8 5 8 o
58 -
2 &£
I
< (s
UL Ny ¥ W . N A S\ i
B8 - 5 ¥ - e 3 o Ll
2 >~ N s b SRR WP\ 3 e
]] L T Sy NP
i | Lt L e " g
& sy R R PR R g\ g g
& s RN gl Mgy R g TR g™ S Il
QR iy Rl R S g Py S T
o =T P iy P g M ST —
B2 === e =
a R ——— sl
| et e o i | it I e
0 - g 05 g R s B SR e
i P 2P o g I S g Ry RO A —
- e eeuCO S S S S gy S Lt
Hr\f“ (“.-N\.f/\flll . —
@ LRy o [i -
5o MRS i sho =
“E Tara] eI IR -aa
0 -~ N N\ o el
5 e T [e e
(] A, N - R SR g N ey
‘\.’(J« \nlynllflll\l” g
- Kl-!\'/. e B R by, o8 g
% -] P s | |
b 0 s S o el
o5 - H\\b/\'/ W o e T -
T . /\\lr\'/ N~ i A s
] S A : e A ——
868 > o — el n
M =\ - =] ~
¥ 5 RN L T T ~
888 = : —= : -
Ll [-]
5E " EygRmmy] —1 : <y
2R o £ | 7] H -~
cfoq T | = = Hy = -
BPAS Tl e | 1 A b
8L o Wy
s 88 = R = Y| 3
ggsw T q -
N = f 1
i :
LA

10

i

10

1500 1504 1508 1512 1516 1520 1524

- A 2 °
2, 2 E
%]]
08 _
2 8=
EEZ
XC=

»

LLLELC(L

WHiN

)}”1

COUARARE

(4L

MIRRRRITIITEY

(LS

WULELLEEEERMM L)

IYNNNURAA 40444000

Crrer

2300 w
\

a1)1 IRAAANANRRSAMa 444 4A 44
LALECLLEEAM UM MY
1321210308000 RARRRNRRINILdE

2400

118

LI

2500

.::;%jz;iiiig ivf,;;iigiigzﬁiiii}

SN

2600

T

R

Time (ms) < |

111111344444

Inling: 14770 Yling: 1540 Timo (mc): 1030 Tracg Amn: 0 N10EA11

49

== Application of DNN lithology prediction to real volume

View 2 Color Data: DFNN_Facies_200_Value_of_most_likely_class Lithology
I - Inserted Data: Lithology zone)
Xline 1500 1504 1508 1512 1516 1520 1524 1528 1529 1533 1537 1541 1545 1549 1553 1557 1561 1565 -
Offset (m) 10 10 10 10 10 10
well We!l_l
2000
Class 4
2100
2200 T
2300
= Class 2
2400
2500
2600
Time (ms)| < | 1l BN
50 .

Summary

In the first part of the talk, | gave a detailed comparison between conventional and
machine learning inversion using a simple example.

| then moved to a hybrid theory-guided data science (TGDS) model approach for
inverting large datasets, in which:

— Rock physics and seismic theory is used to generate synthetic data which is then used to
train the neural network.

— The theory is then used to generate data not present in the well data.

Both post-stack and pre-stack inversion examples were shown

— The post-stack results were nearly identical.

— The machine learning pre-stack inversion had higher frequencies than the theory based
method.

— The DNN allows for nonlinear models so we can estimate target variables such as fluid
saturation or lithology.

51 &

Questions?

{cGG

cgg.com Passion for Geoscience

== Appendix: The complete neural network solution

= Here is a diagram of the complete neural network we will use, consisting of an
input layer, “hidden” layer, output layer and backpropagation algorithm:

“Hidden” layer
Neuronl CI)UtpUt
2 r
1!"/'511] ﬁ (1) (2) w (2) aye
(1) (yl(l)) 1 w
e
Wy - .
Input r
, B
~(D)
e
@ .) Neuron3
Backpropagation Update weights to reduce error Id S —p &

= The key innovation in the network are the three neurons in the last two Iayers.(
53 \

= The feedforward neural network

= In the first part of the process we

apply two sets of bias and gradient

weights to the seismic samples.

= This can be written in vector or
matrix format as follows, where
superscript (1) is the first layer:

O = w1 s

2 = w21 wlls
where1' =[1 1 1 1],and
s'=[-05 .15 —.15 .05]

54

Neuron 1l

m(h)

Neuron 2

VI [ylu) yél)] _SW® =

}T.I(IJ

—0.05|
+0.15
—-0.15
+0.05

== [he logistic function

= The difference between linear and

nonlinear regression is the neurons.
= Each neuron applies a linear or nonlinear J)

function to the weighted inputs.

= The most common nonlinear function is the
logistic (sigmoidal) function, shown here.

= The mathematical form of the logistic

function is:

1
1+exp(-y)

F(y)=

55

1.0

0.5

0

'5 0 }:

= A computational advantage of the logistic
function is its derivative, given by:

f'(y)=f(y)(1-f(y))

== Applying the logistic function in the “hidden” layer

= Thus, we will next apply the logistic Nerers

functions in the “hidden” layer.

= This gives two intermediate
estimates of the reflectivity, which
again can be written in vector or
matrix format:

ﬁ(l) = :)’ 1
1+exp(-y®) 1 PO O 1
— RO _EF® (Y (1)) _ 1 Iy FO —
) 1 180 O rexp(-y®)
pY = oy 31 32 p yij
1+exp(-ys?) 10 0

56 Q

== [he output layer

= Finally, we get to the output layer, Neuronl
shown by the superscript (2). @ A0

= This involves first computing a \
weighted sum of the intermediate Neuron2

wavelets with a new bias and two
gradient weights:

(2 _ (@1 4 @ eD 4 (@ . L Ny
Y7 =wo WU + WU, Wherel . oyr second function is linear, giving:

T _ [M f® p@ ¢ (1)}

f f f f f,,~ |, and

1 21 31 41 £ — f(Z)(W(2)1+W(2)r(1) +W(Z)r(l)) y(2)

T _[e @ 2@ g @ (1)
£ _[rﬂ (22 f2 42] = Or, in matrix form:

== [he logistic function

= The difference between linear and

nonlinear regression is the neurons.
= Each neuron applies a linear or nonlinear J)

function to the weighted inputs.

= The most common nonlinear function is the
logistic (sigmoidal) function, shown here.

= The mathematical form of the logistic

function is:

1
1+exp(-y)

F(y)=

58

1.0

0.5

0

'5 0 }:

= A computational advantage of the logistic
function is its derivative, given by:

f'(y)=f(y)(1-f(y))

== | he backpropagation algorithm

= To find the optimum weights for our neural network a procedure called error
backpropagation is used.

= The algorithm can be summarized as follows:
— Initialize the weights in both layers to small random values.

— Starting with the weights in the output layer, change the weights so as to
minimize the error between the computed and desired output values.

— Backpropagate the error minimization for all layers.
— Iterate until an acceptable error is found.

= Let's now look at error backpropagation in more detail.

59

== | he backpropagation algorithm

= The first step is to compute the error between the output of the network (starting

Neuronl

Update weights to reduce error Id

with the initial weights), which is given by:

60

5@ = _p@

50— _7®

== | he backpropagation algorithm

= The details of the backpropagation algorithm are as follows.

= We start by iteratively updating the weights in layer 2, where for the k+1%
iteration, we get:

@ _ @ WT <(2)
Wiy = Wey T Ry Oy

= With the exception of the reflectivity matrix note the similarity of this equation to
the steepest descent equation.

= The second step is to update the weights in layer 1 as follows:

Derivative of WL =W +aSéy), where:

(k)
logistic > T

W 1 p® _p® 2) @7
function 5(k) 7 [R<k)°(1 R] °[W<k+1)5<k+1)]

= The key new idea in backpropagation is the use of the derivative of the logistic

function, where o implies an element-by-element multiplication of two matrices.
61 \

